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Chromodynamic Weibel instabilities in relativistic nuclear collisions
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Employing a previously derived formulation, and extending the treatment from purely transverse modes to
wave vectors having a longitudinal component, we discuss the prospects for the occurrence of Weibel-type
color-current filamentation in high-energy nuclear collisions. Numerical solutions of the dispersion equation
for a number of scenarios relevant to RHIC and LHC suggest that modegprétthominantly transverseave
numbers of several hundred MeV may become moderately agitated during the early collision stage. The
emergence of filamentation helps to speed up the equilibration of the parton plasma and it may lead to
nonstatistical azimuthal patterns in the hadron final state.
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[. INTRODUCTION evant elements of those. The treatment is made within the
semiclassical transport framework in which the partons are
In the exploration of high-energy nuclear collisiofts, described by their phase-space densities. An early review of
the possible occurrence of collective phenomena is of parquark-gluon transport theory was given by Elze and Heinz
ticular interest. The present note reports on studies of coldrl4], while a very recent review may be found in REE5].
filamentation during the early collision stage. In the present problem, we perturb a plasma of quarks,
Wwithin the framework of electrodynamics, Weibg2]  antiquarks, and gluons whose phase-space densities are uni-
pointed out that self-excited transverse modes exist in plagorm in space and stationary in time. Furthermore, they are
mas with anisotropic momentum distributions and he derivedlistributed equally among the various color channels, so the
their rate of growth from the linear response of the collision-corresponding background densities are color singlets. For
less Boltzmann transport equatitaso known as the Vlasov simplicity, the partons are assumed to be massless, so their
equation. This treatment was later adapted to counterstreamenergies aré,= [p|.
ing fluids of nucleon$3,4] or partong§5-9] and it was found There are, in principle, separate phase-space densities for
that also these systems possess the Weibel filamentation irach quark flavor and each spin component, but since they
stability. Although idealized counterstreaming may not beall contribute additively we may consider just one generic
realized, it is expected that a significant degree of locafjuark density with a fourfold flavor-spin degeneracy,
momentum-space anisotropy will occur at the early stages d(x,p), wherex=(t,r) denotes the four-position anglis
relativistic nuclear collisions at the Relativistic Heavy-lon the quark three-momentum. Similarly, we consider just one

Collider (RHIC) or the Large Hadron Collide(LHC) and common phase_space density for the antiquaa(s(”p)_
investigations have been carried out of the associated Weibel |n addition to being 4 4 Dirac tensors, the phase-space

filamentation modes in chromodynamic plasr&g—12. _densitiesQ and Q are NxN color matrices in the SU)

The present quk _emplpys the approach fo_rmulated ' auge group that have singl@bolorless and multiplet(col-
these latter investigations in an attempt to achieve a mor red parts:

complete and quantitative understanding of the Weibel fila-

mentation phenomenon in high-energy nuclear coIIlSlon_s. Q(x,p) = Qo(p) + 5Q(X,p), (1)

After recalling the most important developments made in

Refs.[10-13, we first discuss the general features of the — = —

filamentation phenomenon and considering, for the first time, Q(X,p)=Qo(P) + JQ(X.P). 2

modes that are not simply transversally aligned. For plasmas , —

relevant to RHIC or LHC, we present numerical results for The singlet .p_arts represent tigeand q backgrou_nd phase-

the resulting growth rates. Furthermore, for suitable idealizegpace densitiesQo=I1fy and Qo=1fy (where | is the N

dynamical scenarios, we extract the collective amplificationx N unit matrix in color space with the phase-space number

coefficients and elucidate the importance of the rapid longidensities for each color being

tudinal expansion as well as the equilibration caused by col- 1 1

lisions among the partons. We conclude by discussing the _ i

possible dynamical implications of these collective modes. fa(P) NTr[Q(x,p)], qup)—NTr[Q(x,p)]. ©

The induced disturbance3Q and 56, which represent de-

viations from the color neutrality, are assumed to be much
The present study is based on the developments maduamaller than the colorless background terms. They may be

previously in Refs[10—13 and we recall here the most rel- expanded on thsl?—1 SU(N) group generatorit,}, which
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0556-2813/2003/68)/03490911)/$20.00 68 034909-1 ©2003 The American Physical Society



JORGEN RANDRUP AND STANISEAW MRONCZYNSKI PHYSICAL REVIEW C 68, 034909 (2003

satisfy Tft,t,]= 3 dap (the trace is with respect toihe color D,=1d,=1g[A.(X),-], D,=Zd,—ig[A.(X),-],
indice9, and the individual color componer(s, andQ, can

be extracted by projection, with A, and A, being the potentials in the fundamental and

adjoint representations, respectively,

Qa(x,p)=2Tt.Q(x,P)],  Qa(X,p)=2THt.Q(x,P)].
@ A =AL)Ta, A0 = —iTapAR).  (14)

Because t.he group gen.erators are traqeless, only the colorlepse stress tensor in the fundamental representatidf, is

part of Q, i.e., Qq, contributes tdf;, while only the colored =9,A,—3,A,—ig[A,,A,], while F,, denotes the field

part 5Q contributes taQ,. , _ 5 strength tensor in the adjoint representation.

Thze gluon phase-space densifyr,p) is an N“~1)  wjih the phase-space densities of forfas (2), and(5),
x(N°—1) matrix in the adjoint representation, which is {he transport equations, which are linearized with respect to
spanned by th&l>— 1 matriceg T?}, whose elements are the 5Q, 5O, and G, can be explicitly solved in terms of the

fSU(][\l) i'{ﬁ;turﬁncﬁgstt?::ts %?g%f]:',za&%% V-I\-/Zemlger:ﬁlté free Green’s functions. Substituting these solutions into ex-
v&r??edbc_ ad IMP N ) y pression(9) for the current, one finds the Fourier transform
of the induced current:

G(x,p)=Go(p) + 8G(x,p) =f¢(P) T+ TaGa(X,p), (5 PE) =TT (K) Ay (K). (15
where the individual elements are
Gap(X,p)= fg(p) Sab— I abcFc(X,P)- (6)

The color singlet parg, is the uniform and stationary gluon 1S 9iven by
background distribution andly(p) is the associated phase-

wherek=(w,k). The polarization tensofl#”(k) does not
carry a color index, since the potential in a given color chan-
nel, AL, can induce color currents in only that chanaelt

3 VI N
space number density in each of tNé—1 different color TT4%(k) = 2f d°p p* Pk _ Ifer(P)
channels labeled bg. The various color components can be (2m)° Ey Pk, i€l gpr
extracted by trace operations: (16)

1 1 with the effectivebackground phase-space density being
fq(p)= mTr[Q(X,p)] = NZ=1Yaa(X.P), (7)

1 1
fei(P)= 5 Tq(P) +5 Ta(P) + Nfy(p). 17

1 i
G.(X,p)= =Tr[ T.G(X,p) 1= < fapFp(T,P). 8
ax.p) N [Tag(x,p)] N abe belFP) ®) The result(15) is similar to the electromagnetic case, the

) ) » only difference being the replacement of the background
The disturbances in the parton phase-space densities cophase-space density of charge carriégsg(p), by theeffec-

tribute additively to the induced current densitjgs tive background phase-space density contributing to each of
1 e u the N°—1 individual color channels. In order to simplify
At = _gJ' P p_[Q (r,p.H)—Qu(rp.t) the analysis, we assume that all the parton specjearks,
A 2%) 2m)PEy T ane antiquarks, and gluohshave the same momentum profile

#(p) with [d°pp(p)=1. So, fei(p)~penc(p) Where the
effective parton density iper=5(pq+ pg) + 5Pg -
. . Insertion of the expressioflL5) for the induced current
whereg is the QCD coupling constany?=47w#:cas. . . ; . PR

In the collisionless idealization, the parton phase—spaC('an.tcl)dthe f|e|Id Squ_atlon Otf. mc;g(c:LnDkMF ()=1"(x), then
densities satisfy Vlasov-type transport equations: yields an algebraic equation fa, (k),

+2ifabcgcb(r’pvt)]r (9)

k2gH?—kHk’—T1#"(k)]A,. (k) =0, 18
“D ,Q(x )+9 M(F (X) aQ(X"O)]=o (10) o et "
PTRLRX.P 2p YR op, ' which in turn leads to the dispersion equation for the collec-
o tive modes,
_ dQ(X,
P“D,Q(x.p)~ gp“’ F,W(X),%p)] =0, () defk?g"" —k*k"—I1#"(k)]=0. (19

However, due to the transversality of the polarization tensor,
k,I1#"(k)=0, the above equation involving a4 determi-
nant can be reduced to an equation that involves only a 3
X 3 determinant. This simplification can be most easily un-
where{-,-} denotes the anticommutator. The covariant de-derstood in the Coulomb gauge, where the chromoelectric
rivativesD,, andD,, act as follows: three-vector is given b¥,=d;A,. Then Eq.(18) for AL is

7G(%,
PAD,G(x.p)+ gpu|f,w<x>,%] -0, (2

14
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immediately transformed into an equation fag and the Dkz(k§+ y2+HXX)(k)2(+ y2+11,,) — (kek,— I1,,)2.
dispersion equation for the collective modes then readily fol- (22
lows,
Since Dy depends ony only through its square, the roots
defk28' —kiki — w2l (k)]=0 (20) come in opposite pairsp,= *ivy,. Furthermore, it can be
seen thaD, vanishes fory=0 since we then have

where the 33 color permittivity tensole has the elements oo I K o —k .
€l(k)=8"—w 2T (k). Although the dispersion equation ( > Xz) :( A0+ D) dol---1) (23
(20) has been derived here in the Coulomb gauge, it is gauge Mo Mgp) (Ko 1)  —kvd- -1

independent since the position of a pole in the gluon propa- )
gator is the same for all gauges, even though the gluoMhere [---1=[9%per(—v,d/dp+vydlop,)/k-v]. The y
propagator itself is a gauge-dependent quantitge Ref. dependence ofl notwithstanding,Dy(y) appears qualita-
[15], for example. tively as a fouth-order polynomial iry, with Dy~ y* for

In the subsequent presentation, we study(6) with the  large |y|. Consequently, in addition to the double root at
polarization tensor derived in the collisionless limit, in which Z€ro, there is at most one other pair of real roats;, . Thus,
the treatment is simplest. A general formal justification forfor any given wave vectd, the dispersion equatid@2) has
adopting this scenario as a first approximation lies in the fac@t most one positive rootyy .
that the frequency of the plasma waves is of oglevhereas When the wave vector is perpendicular to the axis of sym-
that of the binary collisions is of ordef® or g%, depending Mmetry,k=(k,,0,0), the polarization tensor is fully diagonal,
on the momentum transfer. Thus, for sufficiently small cou-lIx,=0. Furthermore[l,,>0, so the dispersion equation
pling constantsy, the collective modes have a shorter char-(22) reduces to
acteristic time than the collisions and consequently, the col- _
lisions do not influence the waves for short periods of time. O0=ki+y*+II,,,
However, in the present case, where the focus is on unstable
modes, this argument may not hold, since the characteristie’
growth rates tend to be significantly slower than the frequen- 2 5
cies of the stable modes. Furthermore, the coupling constant Ki=w€;;. (24)
is actually not that small and the parton density is initially ] N
relatively high. Therefore, the dispersion equati@) de-  This equation has a positive root as longkas<kpax, the
rived within the collisionless idealization should be regardedMaximum being determined b= —I1,(y=0),
merely as a starting point for obtaining a rough idea of the

e an . . 2
quantitative importance of the phenomenon. If it appears 2 —9g2 Pzf d d 25
warranted, more refined treatments would be called for. max= £0"Peff| ‘£ ops  opz) |
Il GENERAL FEATURES This relation shows that there are Weibel filamentation

modes as long as the momentum profile falls off “more rap-
In the present study, we consider momentum profilesdly” in the transverse direction than longitudinally.

¢(p) that are invariant with respect to rotations aroundzhe It is readily seen that the polarization tensor remains un-
axis as well as reflections in thxg plane[it then follows that  affected under a rescaling of its four-vector argumé&nt
¢(—p)=&(p)]. Then the profile function depends only on =(w,k),II(ak)=1I(k). Thus, sincdI(k) is proportional to
the magnitude of the momentum component along the symg?p.« the entire dispersion equation remains unchanged if at
metry axis,pH=|pZ, and the magnitude of the transversethe same time that quantity is multiplied B?. Conse-
momentump, = (p%+p7)"2 Due to this symmetry, we may quently,if for any given value ofy’p.q, the mode with the
generally assume that the wave vector is of the fdem wave vectork has the growth ratey,, thenin a plasma
= (kx,0k,), with ky=k, >0 andk,=k;=0. Finally, since where the value of’p is changed by the factaa®, the
we are seeking modes for which the frequency is purelynode with the wave vectak has the growth ratay, . This

imaginary, we writew =1y wherey is real. general scaling property is very useful, as it makes it possible
The elements of the polarization tendd(k) are to significantly extend the utility of results obtained for spe-
cific scenarios.
) ) vivik- o 3 As k, is varied from zero tkmax (keepingk =0), the
(K =0%perl —v' ==+ ———=K'—), (20 grovyth ratey, starts out linearly from zero, ha_s a bro_aq
p - (k-v)2+ y? P maximum, and then decreases towards zero again. The initial

slope @vy/dk,)q is determined by

where (-) denotes the average over the profile function 2

#(p). Sincell,, and I, vanish in the present case, the <U i>: Uz v i (26)
determinant(20) factorizes into ay part, k?+ y*+11,,, Zop, ve+(dyldk, g *dpy/’

which has no real roots, and az part presenting the dis-

persion equation of interedd, (y)=0, where and it increases with the degree of anisotropy.
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FIG. 1. (Color online Contour plot of the mo-
mentum profile function¢(p) for either the
Gaussiantop) or the pQCD(bottom parametri-
zation, using o, =300 MeVlc and o
=1 GeVlc. The presentation is logarithmic with
four bands per decade.

Transverse momentum (GeV)
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For any given value ok, for which the transverse dis- 1 1 p2+p2 pz
persion equatiofi24) has a solution fok= (k, ,0,0) (i.e., for $CFp) = — exp—| ———~ 22 . (29
k. <kmay, there exists a range of valuds<k["*{k,) for mOL 2o, oL 20

which the general dispersion equati(#?) has solutions for 2 ;2. o 2. 2 B N
k=(k,,0kj). [Forkj=0, the determinard,, considered as where o =(pi+py)=oy+oy and oj=(p;)=0;,. Since
a function ofy2, starts out from zero and exhibits a negative e results will depend only on the anisotropy/o,, we
minimum before starting its steady growth towardsy?. shall adopt a fixed value for the tr_ans_verse_vanange
The value ofy for which D, becomes positive is the asso- — 300 MeVic, and then vary the longitudinal widi . We

2\ _ 2\ -2 : 2
ciated growth ratey,. As k; is increased, the minimum NOt€ Ehzat (dlopy)=(alopy)=—a = while (d/p;)
moves inwardgas does the crossing poigt) and it even- = —z0| “ for the Gaussian profile. _ _
tually merges with the maximum at zero. We then have As an alternative, we employ a pQCD-motivated profile,

#?D\/9y*=0 and k; has attained its maximum value Which has a polynomial transverse falloff,

2
[

K" (k,).]

I \L 4

As the direction of the wave vecttris moved out of the HPCO(p) = E oL 1 o Pi20f (30)
transverse Xy) plane, the direction of the electric field vec- 7 (pF+at)’ N2ma, '

tor E starts to deviate from theaxis, as does the direction of
the induced currerjt In the non-Abelian plasma, the specific We still take the transverse width to be =300 MeV/c and
behavior is gauge dependent and we shall illustrate it in théave (9/dpZ)=—3o]> while now (d/dps)=(alop)

Coulomb gaugéSec. V). = —2012. [We have also considered replacing the longitu-
dinal profile by a Gaussian in the rapidity=3In[(E
IV. CALCULATIONAL SCENARIOS +p)/(E—p,], but such a form is unsuitable because of its

singular behavior ap, =0.]

In order to_have a concrete framework for the pre_sentation Figure 1 illustrates shape of these two test profiles. Gen-
of the numerical results, we shall adopt the following stan-grally, for similar values ofo, and o), the pQCD form
dard values for the RHIC and LHC scenar(d$,17: exhibits a slower transverse falloff whidas we shall see

enhances the degree of instability.

RHIC: a.=0.3, pes(to=0.4 fm/lc)=6 fm~3, (27)
V. TRANSVERSE MODES
LHC: a¢=0.1, pes(to=0.3 fm/fc)=50 fm 3.
(28 In order to illustrate the typical appearance of the disper-

sion relation, we show in Fig. 2 the growth raggfor purely
Obviously, they represent very rough estimates only and wéransverse modds= (k, ,0,0) as a function ok, , for a few
have tried to err on the conservative side. Larger values foselected values of the momentum anisotropy in matter corre-
either the coupling constant or the parton density would onlysponding to the initial RHIC scenario. The curygk, ) rises
enhance the filamentation effect and the simple scaling proginearly fromk, =0 with an initial slope that increases with
erties of the dispersion equatié?2) makes it relatively easy the anisotropysee Eq(26)]. The curve then exhibits a maxi-
to determine what would result if these input values weremum vy, at the optimal wave numbés, =k,, and then de-
changed. creases roughly linearly towards zero kas approaches

In our studies, we shall employ two different analytical =k, with a slope that decreases as the anisotropy in-
parametrizations of the momentum profile functigiip). creases. Although the two different momentum profiles yield
The first form is a simple Gaussian: qualitatively similar dispersion relations, the slower trans-
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FIG. 2. The dispersion relation for four initial RHIC scenarios
(s=0.3ps=6 fm~%) with various momentum anisotropies: the
growth ratey, for purely transverse modess= (k, ,0,0), as a func-
tion of the transverse wave numbler, for the Gaussiaritop) or
pQCD (bottom momentum profilep(p).
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FIG. 3. The maximum wave numbky,,, at the initial timet, as
a function of the longitudinal momentum dispersiopfor Gauss-
ian and pQCD momentum profiles(p) in the standard RHIC and
LHC scenarios given in Eq$27) and(28). The approximate values
given by Eq.(33) are shown for the RHIC scenaridots.

scaling properties of the dispersion equati@4). Further-

more, sinc€v,p,)~(p,) = v2/7o,, we obtain the following
fairly accurate approximation:

1 or 2

2 2, [Lor?
" Pest ﬂ_o'z

1
2
z

2
kmaXN

2
Oy

) ~0,. (33

More important thark,,, is ko, the wave number of the
fastest-growing modes, since these modes will become pre-

verse falloff of the pQCD form generally increases the de-dominant in the course of time. It is shown in Fig(tép).
gree of instability. As a consequence, the maximum wavefter a sharp initial risek, exhibits a very slow decrease
numberk,,x becomes significantly larger and, perhaps morewith increasing anisotropy. For a wide range «f values,

importantly, the maximum growth ratg, is also increased,
although this effect is only rather modest.

the wave number of the fastest-growing modes obtained with
the Gaussian profile is typically around 500 MeV at RHIC

In order to provide a more global impression of theseand 900 MeV at LHC, corresponding to wave lengihsof
features, we first consider the dependence of the maximur@.5 fm and 1.4 fm, respectively. For the pQCD profile these

wave numbek,,,, on the various input valuesee Fig. 3.
For the Gaussian profile we have

1
kﬁ"lax: gzpeﬁ<vzpz> ;E - ;g) ) (31

which shows that there are unstable modes as long,as
>a,. The limiting case k=0, corresponds to isotropy,
o2=02 [=3(300 MeV)?]. For the pQCD profile we find

1
o’f'

Thus, evidentlyk,,., is how larger and the limiting case,
Kmax=0, is oblate,o?=3¢2 [ =%(300 MeV)?]. The result-
ing values ofk,a are shown in Fig. 3. Sinckéax~a§eﬁ,

7=

kzmax: gzpeﬁ<vzpz>( 2 (32
Oy

the results for the LHC and RHIC scenarios differ by a factor

5

of [(@p)iuc/(ap)rmcl¥?=2, in reflection of the general

wave numbers are typically 100 MeV higher. We note that
unless the anisotropy is small, we hagg<k,ay.

The behavior of the maximum growth rajg is shown in
Fig. 4 (bottom and it is qualitatively similar to that dfy: it
exhibits a rapid initial growth followed by a slow decrease.
The maximum growth rate is obtained foro
~1.5-2.0 GeV¢ and the corresponding overall shortest
growth timesry=1/y, are 0.90 fm¢ and 0.55 fm¢ for the
Gaussian profile, respectively, while they are about 20%
shorter for the pQCD profile. Thus the pQCD profile, with its
slower transverse falloff, leads to somewhat larger growth
rates. However, the overall results are very similar for the
two profile forms. In Fig. 4 as well, the scaling feature of the
dispersion equatiori24) implies that the LHC curves are
simply a factor of2 larger than the RHIC curves. It is thus
fairly easy to infer the behavior of the dispersion relation for
any other particular choices of the input parameteysand
Peff -

Our results for the transverse modes agree qualitatively
with the analytical results obtained in R¢11].
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FIG. 5. The maximum value of the longitudinal wave number
k["*as a function of the magnitude of the transverse wave number
k, [a modek=(k ,0k)) is unstable ifkj<k™*] for the initial

RHIC (bottom) and LHC (top) scenarios. The momentum profile is

©
w
T

Maximum growth rate vy, (GeV)

0.2 Gaussian, and the various values of the longitudinal momentum
| dispersiono, are indicated. The vertical and horizontal scales are
," . equal.
0.1 w‘ ——— 0,=0.1, p,=50 fm** (LHC) i
| 0,20.3, p,= 6 fm™ (RHIC) the associated fields and currents are no longer simply re-
lated tok. In order to illustrate the increased complexity, we
0.0 ; : : * : : : consider here th& dependence of the electric field strength
0 1 2 3 4 5 6 7 8 o
Longitudinal momentum width , (GeV) E and the color current densifyn the Coulomb gauggThe

results are gauge invariant for electromagnetic plasmas.
FIG. 4. The wave number of the fastest-growing mdgg(top), ~ Thus, the electric fielE is determined by the following 3
and the associated maximum growth rate(bottom), as functions X 3 matrix equation:
of the longitudinal momentum dispersien for RHIC (solid) and

LHC (dashedl scenarios, using either Gaussian or pQCD momen- (k28" —K'kl — w?€' (k) ]EL (k) =0. (34

tum profiles havingr, =0.3 GeVk.

Since theyy term never vanishe@nd the off-diagonal terms

involving y vanish by symmety we must haveE,=0.

As noted above, for any given purely perpendicular Wave'tl)'hus, the field vector lies in thez plane, t_he plane spanned

vector k=(k,,0,0) for which there exists a filamentation dy thg V\(avefvect?r ar;]d th?. syn;metry axrl]s of the momentym

mode (whose induced current is then perfectly aligned with Istri ut|pn (p). In the aligne case, the wave vector Is

the symmetry axis there exists an entire range of mis- perpe_nd|cular to t_he symmetry axig= (k,,0,0), and the_

aligned modes that are also unstable, being characterized sulting electric field is directed along the symmetry axis,

the wave vectok=(k, 0k, wherekH<kﬁ“a"(kL). =(0,0E,). In the general case, the wave vector has a com-
The dispersion equation for these general filamentatiorﬁ)one”t par.allell to the symmetry axie= (k,,0k;), and thus .

modes is given by Eq22). SinceDy(7) is even and van- no longer lies in the transverse pla_ne. The angle formed with

ishes fory=0, there is at most one positive root for a giventhe. symmetry axisdy, is determ|_ned by taﬂ.k:.kxlkz’

K The resultihg maximum values &f are shown in Fig. 5 Whl|e: the polqr angle of the associated electric field vector,

for selected values of the anisotropy, in both the RHIC andﬁE’ is determined by

LHC scenarios. These curves delineate the respective spin- E ko—TI K24 24 T

odal boundaries ik space and the isotropic metric employed tanﬁE:_X: a7 ke TV 2z

in the display ensures that the directional information is E; K2+ 92410, Kk Iy

meaningful.
For a general mode, whose wave vedtais not perpen- For small values ok,, Jy is near 90°, whiledg is near 0°.

dicular to thez axis, the situation is more complicated and These directions evolve steadily as the magnitudé,ois

VI. GENERAL MODES

(35
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@ — T stantial, typically amounting tAA9~30°. The resulting
I ] modes are rather complicated to describe, since the direc-
o[ I N tions ofk, E, andj have no simple mutual relationship.
Thrn Tooo ]
R N Trooe ] VII. AMPLIFICATION COEFFICIENTS
> — L 1
g it T EEkRE ] The environments produced in high-energy nuclear colli-
e o Ly frieee . sions are endowed with a rapid expansion, primarily in the
g pvrrrny pEhEERLL ] longitudinal (beam directionz. The effective density then
E-frrrris frireee . decreases towards zero in the course of timg(t)—0. We
o [Ehrrry pLblLies 1 shall therefore solve the dispersion equation at successive
§ QLevvrrsy JLrreeee . timest=t, and thus obtain a time-dependent growth rate
5 lLevwvrrss Treeeeee ] vi(t) for each wave vectds. (Such an adiabatic approach is
Solcevrrsy TrLrreece ] valid only for sufficiently slow evolutions and the results
2 Rl AP TLrceee 1 should therefore be regarded as approximati®&nce the
= ; L ssys JTroceee b maximum wave number for which |nst_ab|I|t|es eXiBlax is
CLioss TLecee proportlonal to the square root @fg, it a[so decreases in
N Tiee 1 time, kya(t). Consequently, for each particular wave vector
< ; ; max ; B
Cr,. Tece 1 k, there is a timef,*" beyond which the associated collec-
T tive frequenciest wy are real.
°o 0.2 04 0 02 04 06 Within the adiabatig: approximation, the amplitude of a
Longitudinal wave number kz (GeV) given unstable moddy,, evolves as
. t
_ FI(_S. 6. For a lattice of wave vectol@(ki,o,k”) are shown the th(t)=Cki(t0)exp{iJ y(tHdt'|. (36)
direction of the wave vectol, (the upper-left line of any pair to

together with the direction of either the electric fiedd,(left pane},

or the current densitg (right pane), in the standard RHIC scenario The accumulated increase of the corresponding strength is
with a Gaussian momentum profile havieg=1 GeVic. These then governed by thamplification coefficienf18,19,

results have been obtained in the Coulomb gauge.

tmax

increased, 9 decreasing and)g increasing, until they be- FKEJ’IK v(t)dt. (37
come equal just as the maximum value kgf is reached, 0
Sk, K k))= gk, k[™(k,)). It follows that ELk  An elementary analysis shows that if the density falls off as
only whenk is perpendicular to the symmetry axis and thusan inverse power of timgys~t~#, thenT',~k*~?# in the
it is only those modes that have a purely transverse charactdimit of soft modes. Thus the amplification coefficient di-
Furthermore, there are no purely longitudinal mod&s  verges unless the falloff is at least quadratic.
which E[[k). In a high-energy nuclear collision, the falloff of the den-

For large values ok, , wherey becomes small, there is sity is initially approximately inversely proportional to time,
not much room fork, and the limiting direction does not B=~1, due to the rapid longitudinal expansion, but it then
deviate much from th& direction(it approaches the direc-  quickens(ultimately to 8~3) as the transverse expansion
tion when k, approaches,,,). Obviously, there is most manifests itself. Thus, if carried through, the adiabatic treat-
room for k, for thosek, values that are in the region of ment would vyield finite amplification coefficients for all
maximum growth, while for smak, , where alsoy tends to  modesk. For simplicity, and to avoid a sensitive dependence
zero, there is again little room fde,. However, sincek, is  on the long-time behavior for the soft modes, we shall em-
now also small, the direction d&f is significantly affected by ploy a simple exponential falloff,
the addition ok, . The resulting unstable region knspace is 5
thus a flat disklike voluméwith a central depressigywhich St £
is oriented perpendicular to the symmetry axis of the mo- Pei()~ petlto)€ "= per(to) 2] |’ (38)
mentum profile(the beam axis

It also follows thatll- k=0 at the spinodal boundary. This where st=t—t; is the elapsed time. This form matches the
feature implies that the limiting direction of the current is initial longitudinal expansion while ensuring thgt(t) drops
perpendicular to the wave vect@nd hence to the electric off sufficiently fast at large times to avoid soft divergencies.
field as wel). Furthermore, the direction of the current It thus allows us to evaluate the amplification coefficients in
turns in the same sense as the wave vektdiut initially at  a manner that is insensitive to the long-term behavior of the
a slower rate, so their relative angle never exceeds B(°, collision system.
=0. We first calculatel’, under the assumption that the mo-

The evolution of these various directions with the wavementum distribution remains constant in time whjeg
vectork is illustrated in Fig. 6. We see that in the region of drops off in the above exponential fashi@8). This is ex-
largest amplification the degree of reorientation can be subpected to provide an overestimate of the amplification, since

to
24
: )]
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1.0 T T T VIIl. MOMENTUM RELAXATION
0,203, 1,20.4 fm/c, p,=6 fm® (RHIC) In Fhe abov_e analysis, we have taken account of the de-
o8 | _ | creasing Qen3|ty, but kept the momentum profiles constant. A
= Frozen Gauss momentum profile more realistic treatment must take account of the dynamical
o ,f’f\\ --- 0,=4.0 GeV evolution of the momentum profile as well. Of particular
;% 06 - / N —— 6=20GeV | importance are the rapid longitudinal expansion and thg pos-
8 el — 21.0GeV sibility of collisions among the partons. In order to elucidate
o AN ! the quantitative importance of these agencies, we allow the
IS o4 y "7 0=05Gev momentum distribution to evolve as it would if subjected to
© i a combination of idealized longitudinal expansion and elastic
5.% Boltzmann collisions, while still assuming that the overall
= effective density behaves as in E88). (Thus, although we
E 02 ] have neglected the possible influence of the parton-parton
- collisions on the dispersion relation, we do now consider
T their effect on the anisotropy in the medigm.
0.0 If we ignore the effect of the expansion and treat the
. . . collisions in the relaxation-time approximation, the equation
of motion for the momentum distribution is simple:
0,=0.3, t,=0.4 fm/c, p,=6 fm° (RHIC)
E‘j 08 1 /_\\ Frozen pQCD momentum profile ] i d(pt)=— i[qﬁ(p t) _'("ﬁ(p)] (39
c ; gt te : ’
.g -- 0,=4.0GeV
£ o6 - 0720GeV where ¢(p) is the equilibrium profile(which is isotropi¢
8 o — 0,=1.0GeV | andt, is the relaxation time. If we are only interested in the
S h - 6,205 GeV momentum variances?(t)=[d°pp?¢(p,t), then Eq.(39)
5 04 reduces to a set of coupled equations
(&]
= d 1 ~
£ 02 ot (== lof() -7, (40
< Cc
. whereo? is the equilibrium variance. The evolution is then
00,0 05 10 15 20  the familiar exponential relaxation,
Transverse wave number k; (GeV/c) - _
o?(t)=[o?(t)—o?] e (Tt 52, (42)
FIG. 7. The amplification coefficient, for purely transverse
Weibel modes as a function of the wave numker, for the ideal- We now include a longitudinal scaling expansion, which
ized case when the momentum profile remains frozen throughowtauses the density to decrease steadily in timét)
while the density decreases exponentially according to (B = p(tg)te/t. [The scaling scenario is boost invariant, so it

calculated for the RHIC scenario with either Gaussi&op) or  suffices to consider what happens in a rest frame at the ori-
PQCD (bottom profiles having the specified longitudinal widths gin, wheret andz are identical to the general variablesnd

0. 7.] Since the collision rate is inversely proportional to the

both expansion and equilibration act to reduce the anisodensity.tc t=pov, 'E'ls reasonable to assume that it exhibits
tropy. The resulting amplification coefficients are shown in@ Similar decrease, “=C/t. The equations of motiof40)
Fig. 7. The curves all exhibit a steep initial rise followed by are then modified:

a gentle descent for large wave numbers. Since the modes

with small wave numbers are subject to amplification for a ﬁ(rz: _ E[Uz_az] (42)
longer time, the curves have their maxima shifted down- at X t- X '

wards relative to thé, values for the respective initial sce-

narios. Thus, the largest amplification coefficients are ob- J 5 ~» 5

tained fork, ~250 GeVk in the RHIC scenario and fdk, 9=~ tloz=otl= oz, (43

~400 GeVt in the LHC scenario. Their largest values are

about 0.7 and 0.9, respectively, and they are reachedfor The last term in Eq(43) seeks to flatten the local momentum

~2-4 GeVk. distribution in response to the longitudinal stretching, which

Since the pCDQ momentum profile generally leads toat the same time reduces the collision rate.

growth ratesy, that are larger than those obtained with the The resulting dynamics is then more complicated. For
Gaussian profilésee abovg the resulting amplification co- simplicity, we shall assume that the sum of the momentum
efficientsI", are correspondingly larger, by about 20% in thevariances is preserved by the Boltzmann collisions, as in
region of maximum amplification. elastic nonrelativistic collisions. The equilibrium variance at
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a given timet is then given byo?=}(202+ ¢2). The equa- 0.7 ‘ ‘ ‘
tions of motion(42) and(43) can then be rewritten on matrix . 06 - RHIC: 6,=1.0 GeV ]
form, Ej '
c — Frozen
9 0')2( 1 C —C 0'5 “?_;'; 05 ¢ — — Stretch ]
at\¢?)  3t\-2c 3+2c/|o?) (44) Q04 -~ Collide ]
:':) """"" Stretch & collide
The eigenvalues of the time-independent coupling matrix, & 0.3 1
\ -, are determined by the following secular equation: §
2 02 ]
A2 —3(1+C)\;+3C=0, (45) g """
0.1 b
and the eigenvalues of E(4) are A -=—\+/3t, i.e., D
0.0 :

0.5 1.0 5

. i 1 2.0
Transverse wave number k (GeV/c)

As(t)= %{1+ CT[(1+C)2—4C]¥3>0. (46)

FIG. 8. The effect of the Bjorken expansion and the Boltzmann
relaxation on the amplification coefficiehy , for the RHIC case
with o(tp) =1 GeV/c in various dynamical scenarios: Frozen mo-
mentum distributions, as in Fig. (8olid); flattening of the momen-

It then follows that the associated normal variancésfall
off as inverse powers of time,

o (t) At — eyt are [t \z/3 tum distribution due to the stretching of the systdong dashes
_F(t ) =€t~ =€ = T . relaxation of the momentum distribution due to the collisions, as-
0 a7 sumingC=1 sot(ty)=0.4 fm/c (short dashesand both of those

agencies activédots.

They represent approximately the distortimf—af( and

(half) the total variance 354_05, respectively. in connection with I_:ig. 8, the inclusion of these effects_ lead

Since the Cartesian variances can be expressed in terms§fan overall reduction of more than a factor of 4, relative to

the normal variances, the simple idealized case in which the momentum profiles
remain frozen as the density decreases according t¢3By.

o2=Mo%—eo?], o?=Mo%+2ec?], (48  (shown in Fig. J. The results obtained with pQCD profiles
are quite similar, apart from the values being overall slightly
with N'~1=1+2€? and larger (about 20% for the most amplified modes
Of course, if the Boltzmann relaxation time is increased,
e= %{%[1+§C+C2]1’2—§—%C}>0, (49) the effect of the collisions will decrease, and vice versa.

Since the actual collision rate is hard to assess, it may only

their time evolution can be readily obtained. It is seen that all

the variances tend to zero for argositive value of the
collision constantC, thereby making it possible to simulta-

1.0

x

neously achieve the continual longitudinal shrinkage causedg 0.8

T T

Expansion & collisions
—— LHC: 6,=20GeV -

by the expansiong,—0, and the approach to isotropy .2 < _ — RHIC: 6,=2.0 GeV
caused by the collisions;,— oy . £ Y

The effects of the expansion and equilibration on the am- 3 06 | SN i
plification coefficients is illustrated in Fig. 8 for the Gaussian 2 frozen
momentum profiles. In view of our previous findings, we .2 0.4

expect that the effects are similar for pQCD profiles. We note 8
that the stretching produces an only relatively moderate de<E
creasgabout 20%, whereas the collisions reduce the ampli- & %2
fication coefficients by about a factor of 3. The combined <
effect is then a reduction df, by a factor of nearly 4. The 0.0
collision rate has been somewhat arbitrarily setGe 1, 0.0
corresponding to an initial Boltzmann relaxation time of

te(to) =to. Our results show that there is a considerable sen- £ g The effect of the scaling expansion and the Boltzmann
sitivity to this quantity, which might be better estimated from gqjjjipration on the amplification coefficie, for RHIC and LHC
microscopic parton cascade modg2s). . scenarios. The momentum profiles are Gaussian and have an initial

In order to further elucidate the effect of scaling expan-gispersion ofo(ts)=2 GeVic, for which the largest net amplifi-
sion and the Boltzmann relaxation, we show in Fig. 9 thecation is obtained. The solid curves are those obtained for frozen
effect of including both in the approximately optimal RHIC profiles (shown in Fig. 7, while the dashed curves are obtained in
and LHC scenarios, for which the initial longitudinal vari- the presence of both the scaling expansion and the Boltzmann col-
ance is aroundrj=2 GeV/c (see Fig. 7. As already noted lisions (with C=1).

PO P |
UVUIVIIIQ 0

n 1 n n
1.0 2.0

. 15 T
Transverse wave number k (GeV/c)
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be safe to conclude that the collisions are quantitatively imspinodal region contracts. Therefore, the resulting amplifica-
portant, while th&somewhat more complicatedffect of the  tion coefficient,I',= [ v, (t)dt, which governs the accumu-

expansion appears to be less crucial. lated degree of collective growth for a givdg peaks at
somewhat lower wave numbers, namelkat250 GeVk in
IX. CONCLUDING REMARKS the RHIC scenario and &~400 GeVkt in the LHC sce-

~nario. In the idealized case when the momentum profiles
In the present study, we have sought to make quantitative, ) are kept frozen in time, the largest valuesIof are

estimates of the importance of the Weibel instabilities in the.cached foro;~2—4 GeVE and amount to about 0.7 and

chromodynamic plasma created early on in a high-energy, g respectively, for Gaussian profiles and about 20% more
nuclear collision. Any quantitative calculation must rely on ¢, pQCD profiles. The inclusion of a longitudinal scaling

specific assumptions about the plasma environment, induqéxpansion reduces these numbers only moderéglabout
ing its dynamical evolution, which is presently only ratherzo%)’ so this dynamical complication is not so crucial. By

poorly known. Therefore, our results are correspondingly apgontrast, the inclusion of elastic Boltzmann collisions among
proximate. Fortunately, though, the simple scaling propertiege partons leads to a significant reduction in the degree of
of the Weibel dispersion relation makes it relatively easy togiapility, as the associated relaxation drives the momentum

infer what the result would have been if different input val- hrqfile towards isotropy. For the adopted schematic collision
ues had been employed. Therefore, the utility of our result§ate’ which corresponds to an initial relaxation time of

extends beyond the specific cases presented as iIIustration§C.(to):to the reduction amounts to roughly a factor of 3.
As a concrete framework for our discussion, we have “'1p s "overall, we find that the degree of amplification of
adopted two standard scenarios, one appropriate for RHIgq \weibel filamentation modes is not expected to be spec-

and the other for LHC, in terms of the coupling constagt  acylar for any particular wave vectkr On the other hand,

the initial effective parton densityei(to), and the corre- i annears that the effect may not be negligible either. Fur-
sponding starting timé,. Furthermore, we have employed thermore, it should be kept in mind that there are typically a
axially symmetric momentum profiles that are either Gaussrarge number of such unstable collective modes. so their

ian or pQCD-motivatedleading to a power falloff in the ompined effect on the overall dynamics may be significant.
transverse directionWe have then kept the tranS\_/erse MO-  We therefore wish to conclude by speculating about the
mentum dispersion constant at =300 MeV/c, while ex-  possible dynamical consequences of the color filamentation
ploring the dependence on thiecal) longitudinal spreadr;  phenomenon. One obvious aspect concerns the energy dissi-
(for a given density and profile type, the results depend onlyation. Since the agitation of these collective modes would
on the ratioo /o, ). drain energy from the background system, the occurrence of
Going beyond earlier treatments of these modes, we havgor filamentation presents an additional agency for energy
permitted the wave vectde to have a component along the gissipation. Therefore, in principle, to the extent that these
symmetry axis as well, thus extending the considerations tehodes are agitated, one may expect a correspondingly faster
modes that are not purely transverse. The associated po'%!quilibration of the parton system.
ization tensor is then no longer diagonal. Generally the Fyrthermore, since the perfect azimuthal symmetry in an
growth ratesy, decrease as the parallel componenkds  jdealized head-on collision will be spontaneously broken by
increased, and the reSUIting region of inStab”it}kinace is the appearance of the color currents, one may genera"y ex-
widest in the region where the aligned modes have theipect that the emergent filamentation pattern will manifest
maximal growth rates. Furthermore, the electric field of ajtself in the angular correlations among the final hadrons. In
given modeEy, as well as the induced currejptform an  particular, a nonstatistical distribution of collective energy
angle with the symmetry axis, as we illustrated in the Cou<low will emerge along the local Poynting vectors associated
lomb gauge. The electric field then turtevardsk and fi-  with each amplified filamentation mode. This expectation is
nally becomes parallel tk at the spinodal boundary, while qualitatively different from that based on the parton cascade
the current density turns in the same sens&.aBeing ini-  simulations[20]. The breaking of the azimuthal symmetry is
tially aligned with the symmetry axi@nd thus perpendicular then caused by jets produced in hard parton-parton interac-
to k), it turns at first at a slightly slower rate, so its angle tions and, consequently, the effect is carried by only a few
with k becomes smaller than 90°. It then starts turning at @artons with large transverse momenta. By contrast, due to
faster rate and reverts to being perpendiculaktat the the collective character of the filamentation instability, the
boundary, where it is thus perpendiculario azimuthal symmetry breaking will presumably involve a
The largest growth rateg, are obtained for modes whose large number of partons having relatively small transverse
wave numbers are perpendicular to the symmetry axis anghomenta.
they have a transverse character,k. Over a wide range of It has already been speculated that color filamentation
o values, these wave numbers are typically aroundnay have observable consequences for the elliptic fRi
500 MeV at RHIC and 900 MeV at LHC, corresponding to based on the argument that the parton trajectories tend to
wave lengths\ of 2.5 fm and 1.4 fm, respectively. The cor- become concentrated within the centers of the filaments. The
responding growth rates are generally larger for the pQCzonservation of phase-space volume then expands the mo-
profiles, but only by about 20% for the fastest modes. How-mentum distribution perpendicular to the filaments. A corre-
ever, as the density decreases in the course of time, theponding quantum-mechanical argument can be made on the
higher wave numbers are progressively disfavored, as theasis of the uncertainty relation.
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Finally, it would appear that color filamentation might veloped. As a step in this direction, it might be interesting to
delay hadronization. This possibility is due to the basic factsolve the self-consistent Vlasov equati¢©)—(12) in sche-
that no hadronization can occur in the presence of color cumatic collision scenarios in order to investigate how the fila-
rents, since the hadronic phase is constituted entirely of colmentation modes manifest themselves.
orless entities and thus unable to sustain any colored agita-
tions. Thus, any collective color currents induced by the
filamentation phenomenon would have to subside before the ACKNOWLEDGMENTS
chromodynamic plasma could transform itself into an assem-
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